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1. INTRODUCTION

The aim of this note is to prove existence and multiplicity of small amplitude periodic
solutions of the completely resonant wave equation

(1)

{
!u + f (x, u) = 0,
u(t, 0) = u(t, π) = 0,

where ! := ∂tt − ∂xx is the d’Alembertian operator and

(2) f (x, u) = a2u
2 + a3(x)u3 + O(u4) or f (x, u) = a4u

4 + O(u5),

for a Cantor-like set of frequencies ω of asymptotically full measure at ω = 1.
Equation (1) is said to be completely resonant because any solution v =∑

j≥1 aj cos(j t + ϑj ) sin(jx) of the linearized equation at u = 0,

(3)

{
utt − uxx = 0,
u(t, 0) = u(t, π) = 0,

is 2π -periodic in time.
Existence and multiplicity of periodic solutions of (1) were proved for a zero measure,

uncountable Cantor set of frequencies in [4] for f (u) = u3+O(u5) and in [5]–[6] for any
nonlinearity f (u) = apup + O(up+1), p ≥ 2.

Existence of periodic solutions for a Cantor-like set of frequencies of asymptotically
full measure has recently been proved in [7] where, due to the well known “small divisor
difficulty”, the “0th order bifurcation equation” is required to have nondegenerate periodic
solutions. This property was verified in [7] for nonlinearities like f = a2u

2 + O(u4),
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f = a3(x)u3 + O(u4). See also [11] for f = u3 + O(u5) (and [9] in the case of periodic
boundary conditions).

In this note we shall prove that, for quadratic, cubic and quartic nonlinearities f (x, u)

as in (2), the corresponding 0th order bifurcation equation has nondegenerate periodic
solutions (Propositions 1 and 2), implying, by the results of [7], Theorem 1 and Corollary 1
below.

We remark that our proof is purely analytic (it does not use numerical calculations)
being based on the analysis of the variational equation and exploiting properties of the
Jacobi elliptic functions.

1.1. Main results

Normalizing the period to 2π , we look for solutions of
{

ω2utt − uxx + f (x, u) = 0,
u(t, 0) = u(t, π) = 0,

in the Hilbert algebra (for s > 1/2, σ > 0)

Xσ,s :=
{
u(t, x) =

∑

l≥0
cos(lt)ul(x)

∣∣∣ ul ∈ H 1
0 ((0, π), R) ∀l ∈ N and

‖u‖2σ,s :=
∑

l≥0
exp(2σ l)(l2s + 1)‖ul‖2H 1 < +∞

}
.

It is natural to look for solutions which are even in time because equation (1) is
reversible.

We look as well for solutions of (1) in the subalgebras

Xσ,s,n := {u ∈ Xσ,s | u is 2π/n-periodic} ⊂ Xσ,s, n ∈ N

(they are particular 2π -periodic solutions).
The space of solutions of the linear equation (3) that belong to H 1

0 (T × (0, π), R) and
are even in time is

V :=
{
v(t, x) =

∑

l≥1
cos(lt)ul sin(lx)

∣∣∣ ul ∈ R,
∑

l≥1
l2|ul |2 < +∞

}

=
{
v(t, x) = η(t + x) − η(t − x)

∣∣∣ η ∈ H 1(T, R) odd
}
.

THEOREM 1. Let either

(4) f (x, u) = a2u
2 + a3(x)u3 +

∑

k≥4
ak(x)uk

where (a2, 〈a3〉) += (0, 0), 〈a3〉 := π−1 ∫ π
0 a3(x) dx, or

(5) f (x, u) = a4u
4 +

∑

k≥5
ak(x)uk
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where a4 += 0, a5(π − x) = −a5(x), a6(π − x) = a6(x), a7(π − x) = −a7(x). Assume
moreover ak(x) ∈ H 1((0, π), R) with

∑
k ‖ak‖H 1ρk < +∞ for some ρ > 0. Then there

exists n0 ∈ N such that for every n ≥ n0 there are δ0, σ̄ > 0 and a C∞-curve [0, δ0) ,
δ -→ uδ ∈ Xσ̄/2,s,n with the following properties:

(i) ‖uδ − δv̄n‖σ̄ /2,s,n = O(δ2) for some v̄n ∈ V ∩Xσ̄,s,n \{0} with minimal period 2π/n;
(ii) there exists a Cantor set Cn ⊂ [0, δ0) of asymptotically full measure at δ = 0, i.e.

satisfying

(6) lim
ε→0+

meas(Cn ∩ (0, ε))
ε

= 1,

such that, for each δ ∈ Cn, uδ(ω(δ)t, x) is a 2π/(ω(δ)n)-periodic, classical solution
of (1) with

ω(δ) =
{√

1− 2s∗δ2 if f is as in (4),√
1− 2δ6 if f is as in (5),

and

s∗ =






−1 if 〈a3〉 ≥ π2a22/12,
±1 if 0 < 〈a3〉 < π2a22/12,
1 if 〈a3〉 ≤ 0.

By (6) also each Cantor-like set of frequencies Wn := {ω(δ) | δ ∈ Cn} has
asymptotically full measure at ω = 1.

Note how the interaction between the second and third order terms a2u
2, a3(x)u3

changes the bifurcation diagram, i.e. existence of periodic solutions for frequencies ω less
than or/and greater than ω = 1.

COROLLARY 1 (Multiplicity). There exists a Cantor-like set W of asymptotically full
measure at ω = 1 such that for each ω ∈ C, equation (1) has geometrically distinct
periodic solutions

un0 , . . . , un, . . . , uNω, Nω ∈ N,

with the same period 2π/ω. Their number increases indefinitely as ω tends to 1:

lim
ω→1

Nω = +∞.

PROOF. The proof is as in [7] and we repeat it for completeness. If δ belongs to the
asymptotically full measure set (by (6))

Dn := Cn0 ∩ . . . ∩ Cn, n ≥ n0,

then there exist n − n0 + 1 geometrically distinct periodic solutions of (1) with the same
period 2π/ω(δ) (each un has minimal period 2π/(nω(δ))).

There exists a decreasing sequence of positive εn → 0 such that

meas(Dc
n ∩ (0, εn)) ≤ εn2−n.



260 P. BALDI - M. BERTI

Define the set C ≡ Dn on each [εn+1, εn). Then C has asymptotically full measure at
δ = 0 and for each δ ∈ C there exist N(δ) := max{n ∈ N : δ < εn} geometrically
distinct periodic solutions of (1) with the same period 2π/ω(δ), and N(δ) → +∞ as
δ → 0. !

REMARK 1. Corollary 1 is an analogue for equation (1) of the well known multiplicity
results of Weinstein–Moser [13]–[12] and Fadell–Rabinowitz [10] which hold in finite
dimensions. The solutions form a sequence of functions with increasing norms and
decreasing minimal periods. Multiplicity of solutions was also obtained in [6] (with the
“optimal” number Nω ≈ C/

√|ω − 1|) but only for a zero measure set of frequencies.

The main point in proving Theorem 1 is to show the existence of nondegenerate
solutions of the 0th order bifurcation equation for f as in (2). In these cases the 0th order
bifurcation equation involves higher order terms of the nonlinearity, and, for n large, can be
reduced to an integro-differential equation (which physically describes an averaged effect
of the nonlinearity with Dirichlet boundary conditions).

CASE f (x, u) = a4u
4 + O(u5). Performing the rescaling u → δu, δ > 0, we look for

2π/n-periodic solutions in Xσ,s,n of

(7)

{
ω2utt − uxx + δ3g(δ, x, u) = 0,
u(t, 0) = u(t, π) = 0,

where
g(δ, x, u) := f (x, δu)

δ4
= a4u

4 + δa5(x)u5 + δ2a6(x)u6 + . . . .

To find solutions of (7) we implement the Lyapunov–Schmidt reduction according to the
orthogonal decomposition Xσ,s,n = (Vn ∩ Xσ,s,n) ⊕ (W ∩ Xσ,s,n) where

Vn := {v(t, x) = η(nt + nx) − η(nt − nx) | η ∈ H 1(T, R) odd},

W :=
{
w =

∑

l≥0
cos(lt)wl(x) ∈ X0,s

∣∣∣∣

∫ π

0
wl(x) sin(lx) dx = 0, ∀l ≥ 0

}
.

Looking for solutions u = v + w with v ∈ Vn ∩ Xσ,s,n, w ∈ W ∩ Xσ,s,n, and imposing the
frequency-amplitude relation

ω2 − 1
2

= −δ6

we are led to solve the bifurcation equation and the range equation
{

∆v = δ−3ΠVng(δ, x, v + w),

Lωw = δ3ΠWng(δ, x, v + w),

where ∆v := vxx + vtt , Lω := −ω2∂tt + ∂xx and ΠVn : Xσ,s,n → Vn ∩ Xσ,s,n,
ΠWn : Xσ,s,n → W ∩ Xσ,s,n denote the projectors.



PERIODIC SOLUTIONS OF WAVE EQUATIONS 261

With the further rescaling w -→ δ3w and since v4 ∈ Wn (Lemma 3.4 of [5]), a5(x)v5,
a6(x)v6, a7(x)v7 ∈ Wn because a5(π − x) = −a5(x), a6(π − x) = a6(x), a7(π − x) =
−a7(x) (Lemma 7.1 of [7]), the system is equivalent to

(8)

{
∆v = ΠVn(4a4v3w + δr(δ, x, v, w)),

Lωw = a4v
4 + δΠWnr̃(δ, x, v, w),

where r(δ, x, v, w) = a8(x)v8 + 5a5(x)v4w + O(δ) and r̃(δ, x, v, w) = a5(x)v5 + O(δ).
For δ = 0 system (8) reduces to w = −a4!−1v4 and to the 0th order bifurcation

equation

(9) ∆v + 4a24ΠVn(v
3!−1v4) = 0,

which is the Euler–Lagrange equation of the functional Φ0 : Vn → R,

(10) Φ0(v) =
‖v‖2H1
2

− a24
2

∫

Ω
v4!−1v4

where Ω := T × (0, π).

PROPOSITION 1. Let a4 += 0. There exists n0 ∈ N such that for all n ≥ n0 the 0th
order bifurcation equation (9) has a solution v̄n ∈ Vn which is nondegenerate in Vn (i.e.
KerD2Φ0 = {0}), with minimal period 2π/n.

CASE f (x, u) = a2u
2 + a3(x)u3 + O(u4). Performing the rescaling u -→ δu we look

for 2π/n-periodic solutions of
{

ω2utt − uxx + δg(δ, x, u) = 0,
u(t, 0) = u(t, π) = 0,

where
g(δ, x, u) := f (x, δu)

δ2
= a2u

2 + δa3(x)u3 + δ2a4(x)u4 + . . . .

With the frequency-amplitude relation

ω2 − 1
2

= −s∗δ2

where s∗ = ±1, we have to solve
{

−∆v = −s∗δ−1ΠVng(δ, x, v + w),

Lωw = δΠWng(δ, x, v + w).

With the further rescaling w -→ δw and since v2 ∈ Wn, the system is equivalent to
{

−∆v = s∗ΠVn(−2a2vw − a2δw
2 − a3(x)(v + δw)3 − δr(δ, x, v + δw)),

Lωw = a2v
2 + δΠWn(2a2vw + δa2w

2 + a3(x)(v + δw)3 + δr(δ, x, v + δw)),

where r(δ, x, u) := δ−4[f (x, δu) − a2δ
2u2 − δ3a3(x)u3] = a4(x)u4 + . . . .
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For δ = 0 the system reduces tow = −a2!−1v2 and the 0th order bifurcation equation

(11) −s∗∆v = 2a22ΠVn(v!−1v2) − ΠVn(a3(x)v3),

which is the Euler–Lagrange equation of Φ0 : Vn → R,

(12) Φ0(v) := s∗ ‖v‖2
H 1

2
− a22
2

∫

Ω
v2!−1v2 + 1

4

∫

Ω
a3(x)v4.

PROPOSITION 2. Let (a2, 〈a3〉) += (0, 0). There exists n0 ∈ N such that for all n ≥ n0
the 0th order bifurcation equation (11) has a solution v̄n ∈ Vn which is nondegenerate in
Vn, with minimal period 2π/n.

2. CASE f (x, u) = a4u
4 + O(u5)

We have to prove the existence of nondegenerate critical points of the functional

Φn : V → R, Φn(v) := Φ0(Hnv),

where Φ0 is defined in (10). Let Hn : V → V be the linear isomorphism defined, for
v(t, x) = η(t + x) − η(t − x) ∈ V , by

(Hnv)(t, x) := η(n(t + x)) − η(n(t − x))

so that Vn ≡ HnV .

LEMMA 1 (see [6]). Φn has the following development: for v(t, x) = η(t + x) − η(t − x)

∈ V ,

(13) Φn(βn1/3v) = 4πβ2n8/3
[
Ψ (η) + α

R(η)

n2

]
,

where β := (3/(π2a24))
1/6, α := 3/(8π3),

(14) Ψ (η) := 1
2

∫

T
η′2(t) dt − π

4
(〈η4〉 + 3〈η2〉2)2,

〈 〉 denotes the average on T, and

(15) R(η) := −
∫

Ω
v4!−1v4 dt dx + 2π4

3
4(〈η4〉 + 3〈η2〉2)2.

PROOF. First, the quadratic term is

1
2
‖Hnv‖2

H 1 = n2

2
‖v‖2

H 1 = n22π
∫

T
η′2(t) dt.

By Lemma 4.8 in [6] the nonquadratic term can be developed as
∫

Ω
(Hnv)4!−1(Hnv)4 = π4

6
〈m〉2 − R(η)

n2
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where m : T2 → R is defined by m(s1, s2) := (η(s1) − η(s2))
4, its average is 〈m〉 :=

(2π)−2
∫
T2 m(s1, s2) ds1 ds2 and

R(η) := −
∫

Ω
v4!−1v4 + π4

6
〈m〉2

is homogeneous of degree 8. Since η is odd we find 〈m〉 = 2(〈η4〉 + 3〈η2〉2), where 〈 〉
denotes the average on T. Collecting these equalities we find that

Φn(η) = 2πn2
∫

T
η′2(t) dt − π4

3
a24(〈η4〉 + 3〈η2〉2)2 + a24

2n2
R(η).

Via the rescaling η -→ βn1/3η we get expressions (14) and (15). !

By (13), in order to find for n large enough a nondegenerate critical point of Φn, it is
sufficient to find nondegenerate critical points of Ψ (η) defined on

E := {η ∈ H 1(T) | η odd},

namely nondegenerate solutions in E of

(16) η̈ + A(η)(3〈η2〉η + η3) = 0, A(η) := 〈η4〉 + 3〈η2〉2.

PROPOSITION 3. There exists an odd, analytic, 2π -periodic solution g(t) of (16) which
is nondegenerate in E. It is given by g(t) = V sn(Ωt, m) where sn is the Jacobi elliptic
sine and V, Ω > 0 and m ∈ (−1, 0) are suitable constants (therefore g(t) has minimal
period 2π).

Wewill construct the solution g of (16) by means of the Jacobi elliptic sine in Lemma 6.
The existence of a solution g also follows directly by applying to Ψ : E → R the
Mountain-Pass Theorem [2]. Furthermore this solution is an analytic function by arguing
as in Lemma 2.1 of [7].

2.1. Nondegeneracy of g

We now want to prove that g is nondegenerate. The linearized equation of (16) at g is

ḧ + 3A(g)(〈g2〉h + g2h) + 6A(g)g〈gh〉 + A′(g)[h](3〈g2〉g + g3) = 0,

which we write as

(17) ḧ + 3A(g)(〈g2〉 + g2)h = −〈gh〉I1 − 〈g3h〉I2

where
{

I1 := 6(9〈g2〉2 + 〈g4〉)g + 12〈g2〉g3,
I2 := 12g〈g2〉 + 4g3.

(18)
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For f ∈ E, let H := L(f ) be the unique solution belonging to E of the nonhomogeneous
linear system

(19) Ḧ + 3A(g)(〈g2〉 + g2)H = f ;

an integral representation of the Green operator L is given in Lemma 4 below. Thus (17)
becomes

(20) h = −〈gh〉L(I1) − 〈g3h〉L(I2).

Multiplying (20) by g and taking averages we get

〈gh〉[1+ 〈gL(I1)〉] = −〈g3h〉〈gL(I2)〉,(21)

while multiplying (20) by g3 and taking averages yields

〈g3h〉[1+ 〈g3L(I2)〉] = −〈gh〉〈g3L(I1)〉.(22)

Since g solves (16) we can deduce the following identities.

LEMMA 2. We have

2A(g)〈g3L(g)〉 = 〈g2〉, 2A(g)〈g3L(g3)〉 = 〈g4〉.

PROOF. The first equality is obtained from the identity for L(g),

d2

dt2
(L(g)) + 3A(g)(〈g2〉 + g2)L(g) = g,

by multiplying by g, taking averages, integrating by parts,

〈g̈L(g)〉 + 3A(g)[〈g2〉〈L(g)g〉 + 〈g3L(g)〉] = 〈g2〉,

and using the fact that g solves (16).
Analogously, the second equality is obtained from the identity for L(g3),

d2

dt2
(L(g3)) + 3A(g)(〈g2〉 + g2)L(g3) = g3,

by multiplying by g, taking averages, integrating by parts, and using the fact that g

solves (16). !

Since L is a symmetric operator we can compute the following averages using (18) and
Lemma 2:






〈gL(I1)〉 = 6(〈g4〉 + 9〈g2〉2)〈gL(g)〉 + 6A(g)−1〈g2〉2,
〈gL(I2)〉 = 12〈g2〉〈gL(g)〉 + 2A(g)−1〈g2〉,
〈g3L(I1)〉 = 9〈g2〉,
〈g3L(I2)〉 = 2.

(23)
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Thanks to the identities (23), equations (21), (22) simplify to
{

〈gh〉[A(g) + 6〈g2〉2]B(g) = −2〈g2〉B(g)〈g3h〉,
〈g3h〉 = −3〈g2〉〈gh〉,(24)

where

B(g) := 1+ 6A(g)〈gL(g)〉.(25)

Solving (24) we get B(g)〈gh〉 = 0. We will prove in Lemma 5 that B(g) += 0, so 〈gh〉 = 0.
Hence by (24) also 〈g3h〉 = 0 and therefore, by (20), h = 0. This concludes the proof of
the nondegeneracy of the solution g of (16).

It remains to prove that B(g) += 0. The key is to express the function L(g) by means
of the variation of constants formula.

We first look for a fundamental set of solutions of the homogeneous equation

(HOM) ḧ + 3A(g)(〈g2〉 + g2)h = 0.

LEMMA 3. There exist two linearly independent solutions of (HOM), ū := ġ(t)/ġ(0)
and v̄, such that

{
ū is even, 2π -periodic,
ū(0) = 1, ˙̄u(0) = 0,

{
v̄ is odd, not periodic,
v̄(0) = 0, ˙̄v(0) = 1,

and

(26) v̄(t + 2π) − v̄(t) = ρū(t) for some ρ > 0.

PROOF. Since (16) is autonomous, ġ(t) is a solution of the linearized equation (HOM); it
is even and 2π -periodic.

We can construct another solution of (HOM) in the following way. The superquadratic
Hamiltonian system (with constant coefficients)

ÿ + 3A(g)〈g2〉y + A(g)y3 = 0(27)

has a one-parameter family of odd, T (E)-periodic solutions y(E, t), close to g, para-
metrized by the energy E. Let Ē denote the energy level of g, i.e. g = y(Ē, t) and
T (Ē) = 2π . Then l(t) := (∂Ey(E, t))|E=Ē is an odd solution of (HOM). Differentiating
the identity y(E, t + T (E)) = y(E, t) with respect to E we obtain, at E = Ē,
l(t + 2π) − l(t) = −(∂ET (E))|E=Ē ġ(t) and, normalizing v̄(t) := l(t)/l̇(0), we get (26)
with ρ := −(∂ET (E))|E=Ē ġ(0)/l̇(0).

Since y(E, 0) = 0 for allE, the energy identity givesE = 1
2 (ẏ(E, 0))2. Differentiating

with respect to E at E = Ē yields 1 = ġ(0)l̇(0), so

(28) ρ = −(∂ET (E))|E=Ē(ġ(0))2.

We have ρ > 0 because (∂ET (E))|E=Ē < 0 by the superquadraticity of the potential
of (27). This can also be checked by a computation (see Remark after Lemma 6). !
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Now we write an integral formula for the Green operator L.

LEMMA 4. For every f ∈ E there exists a unique solution H = L(f ) of (19) which can
be written as

L(f ) =
(∫ t

0
f (s)ū(s) ds + 1

ρ

∫ 2π

0
f v̄

)
v̄(t) −

(∫ t

0
f (s)v̄(s) ds

)
ū(t) ∈ E.

PROOF. The nonhomogeneous equation (19) has the particular solution

H̄ (t) =
(∫ t

0
f (s)ū(s) ds

)
v̄(t) −

(∫ t

0
f (s)v̄(s) ds

)
ū(t)

as can be verified by observing that the Wronskian ū(t) ˙̄v(t)− ˙̄u(t)v̄(t) ≡ 1 for all t . Notice
that H̄ is odd.

Any solution H(t) of (19) can be written as H(t) = H̄ (t) + aū + bv̄, a, b ∈ R. Since
H̄ is odd, ū is even and v̄ is odd, requiring H to be odd implies a = 0. Imposing now the
2π -periodicity yields

0 =
(∫ t+2π

0
f ū

)
v̄(t + 2π) −

(∫ t+2π

0
f v̄

)
ū(t + 2π) −

(∫ t

0
f ū

)
v̄(t)

+
(∫ t

0
f v̄

)
ū(t) + b(v̄(t + 2π) − v̄(t))

=
(

b +
∫ t

0
f ū

)
(v̄(t + 2π) − v̄(t)) − ū(t)

(∫ t+2π

t
f v̄

)
,

because ū and f ū are 2π -periodic and 〈f ū〉 = 0. By (26) we have

ρ

(
b +

∫ t

0
f ū

)
−

∫ t+2π

t
f v̄ = 0.

This expression is constant in time, because, by differentiating in t ,

ρf (t)ū(t) − f (t)(v̄(t + 2π) − v̄(t)) = 0

again by (26). Hence evaluating at t = 0 yields b = ρ−1 ∫ 2π
0 f v̄. So there exists a

unique solution H = L(f ) of (19) belonging to E, and the integral representation of
L follows. !

LEMMA 5. We have

〈gL(g)〉 = ρ

4πA(g)
+ 1
2πρ

(∫ 2π

0
gv̄

)2
> 0

because A(g) > 0 and ρ > 0.
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PROOF. Using the formula of Lemma 4 and integrating by parts we can compute

〈gL(g)〉 = 1
2π

∫ 2π

0

(∫ t

0
gū

)
v̄(t)g(t) dt + 1

2πρ

(∫ 2π

0
gv̄

)2

− 1
2π

∫ 2π

0

(∫ t

0
gv̄

)
ū(t)g(t) dt

= 2
1
2π

∫ 2π

0

(∫ t

0
gū

)
v̄(t)g(t) dt + 1

2πρ

(∫ 2π

0
gv̄

)2

because
∫ 2π
0 gū = 0. Since ū(t) = ġ(t)/ġ(0) and g(0) = 0, we have
∫ t

0
gū = 1

2ġ(0)
g2(t),

∫ 2π

0

(∫ t

0
gū

)
v̄(t)g(t) dt = 1

2ġ(0)

∫ 2π

0
g3v̄,

so it remains to show that

(29)
∫ 2π

0
g3v̄ = ρġ(0)

2A(g)
.

Since g solves (16), multiplying by v̄ and integrating yields
∫ 2π

0
[v̄(t)g̈(t) + 3A(g)〈g2〉g(t)v̄(t) + A(g)g3(t)v̄(t)] dt = 0.

Since v̄ solves (HOM), multiplying by g and integrating gives
∫ 2π

0
[g(t) ¨̄v(t) + 3A(g)〈g2〉v̄(t)g(t) + 3A(g)g3(t)v̄(t)] dt = 0.

Subtracting the last two equalities we get
∫ 2π

0
[v̄(t)g̈(t) − g(t) ¨̄v(t)] dt = 2A(g)

∫ 2π

0
g3v̄.

Integrating by parts the left hand side, since g(0) = g(2π) = 0, ū(0) = 1 and (26), we
obtain ∫ 2π

0
[v̄(t)g̈(t) − g(t) ¨̄v(t)] dt = ġ(0)[v(2π) − v(0)] = ρġ(0).

So 2A(g)
∫ 2π
0 g3v̄ = ρġ(0). !

2.2. Explicit computations

We now give the explicit construction of g by means of the Jacobi elliptic sine defined as
follows. Let am(·, m) : R → R be the inverse function of the Jacobi elliptic integral of the
first kind

ϕ -→ F(ϕ, m) :=
∫ ϕ

0

dϑ
√
1− m sin2 ϑ

.
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The Jacobi elliptic sine is defined by

sn(t, m) := sin(am(t, m)).

It is 4K(m)-periodic, where K(m) is the complete elliptic integral of the first kind

K(m) := F

(
π

2
, m

)
=

∫ π/2

0

dϑ
√
1− m sin2 ϑ

,

and admits an analytic extension with a pole at iK(1−m) form ∈ (0, 1) and at iK(1/(1−
m))/

√
1− m for m < 0. Moreover, since ∂t am(t, m) =

√
1− m sn2(t, m), the elliptic

sine satisfies

(30) (ṡn)2 = (1− sn2)(1− m sn2).

LEMMA 6. There exist V, Ω > 0 and m ∈ (−1, 0) such that g(t) := V sn(Ωt, m) is an
odd, analytic, 2π -periodic solution of (16) with pole at iK(1/(1− m))/(Ω

√
1− m).

PROOF. Differentiating (30) we have s̈n + (1 + m) sn−2m sn3 = 0. Therefore
g(V,Ω,m)(t) := V sn(Ωt, m) is an odd, (4K(m)/Ω)-periodic solution of

(31) g̈ + Ω2(1+ m)g − 2m
Ω2

V 2 g3 = 0.

The function g(V,Ω,m) will be a solution of (16) if (V , Ω,m) satisfy





Ω2(1+ m) = 3A(g(V,Ω,m))〈g2(V ,Ω,m)〉,
−2mΩ2 = V 2A(g(V,Ω,m)),

2K(m) = Ωπ.

(32)

Dividing the first equation of (32) by the second yields

(33) −1+ m

6m
= 〈sn2(·, m)〉.

The right hand side can be expressed as

(34) 〈sn2(·, m)〉 = K(m) − E(m)

mK(m)
,

where E(m) is the complete elliptic integral of the second kind,

E(m) :=
∫ π/2

0

√
1− m sin2 ϑ dϑ =

∫ K(m)

0
(1− m sn2(ξ, m)) dξ

(in the last passage we make the change of variable ϑ = am(ξ, m)).
Now, we show that system (32) has a unique solution. By (33) and (34),

(7+ m)K(m) − 6E(m) = 0.
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By the definitions of E(m) and K(m) we have

ψ(m) := (7+ m)K(m) − 6E(m) =
∫ π/2

0

1+ m(1+ 6 sin2 ϑ)

(1− m sin2 ϑ)1/2
dϑ.

We have ψ(0) = π/2 > 0 and ψ(−1) = −
∫ π/2
0 6 sin2 ϑ (1+ sin2 ϑ)−1/2 dϑ < 0. Since

ψ is continuous there exists m̄ ∈ (−1, 0) such that ψ(m̄) = 0. Next the third equation in
(32) fixes Ω̄ and finally we find V̄ . Hence g(t) = V̄ sn(Ω̄t, m̄) solves (16).

Analyticity and poles follow from [1, 16.2, 16.10.2, pp. 570, 573].
Finally, m̄ is unique because ψ ′(m) > 0 for m ∈ (−1, 0) as can be verified by

differentiating the formula for ψ . One can also compute that m̄ ∈ (−0.30, −0.28). !

REMARK. We can explicitly compute the sign of dT /dE and ρ of (28) in the following
way. The functions g(V,Ω,m) are solutions of the Hamiltonian system (27)

(35)

{
Ω2(1+ m) = α,

−2mΩ2 = V 2β,

where α := 3A(g)〈g2〉, β := A(g) and g is the solution constructed in Lemma 6.
We solve (35) with respect to m to find the one-parameter family (ym) of odd periodic

solutions ym(t) := V (m) sn(Ω(m)t, m), close to g, with energy and period

E(m) = 1
2
V 2(m)Ω2(m) = − 1

β
mΩ4(m), T (m) = 4K(m)

Ω(m)
.

We have
dT (m)

dm
= 4K ′(m)Ω(m) − 4K(m)Ω ′(m)

Ω2(m)
> 0,

because K ′(m) > 0 and from (35), Ω ′(m) = −Ω(m)(2(1+ m))−1 < 0. Then

dE(m)

dm
= − 1

β
Ω4(m) − 1

β
m4Ω3(m)Ω ′(m) < 0,

so
dT

dE
= dT (m)

dm

(
dE(m)

dm

)−1
< 0

as stated by general arguments in the proof of Lemma 3.
We can also write an explicit formula for ρ,

ρ = m

m − 1

[
2π + (1+ m)

∫ 2π

0

sn2(Ωt, m)

dn2(Ωt, m)
dt

]
.

From this formula it follows that ρ > 0 because −1 < m < 0.
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3. CASE f (x, u) = a2u
2 + a3(x)u3 + O(u4)

We have to prove the existence of nondegenerate critical points of the functionalΦn(v) :=
Φ0(Hnv) where Φ0 is defined in (12).

LEMMA 7 (see [6]). Φn has the following development: for v(t, x) = η(t + x) − η(t − x)

∈ V ,

Φn(βnv) = 4πβ2n4
[
Ψ (η) + β2

4π

(
R2(η)

n2
+ R3(η)

)]
,

where

Ψ (η) := s∗

2

∫

T
η̇2 + β2

4π

[
α

(∫

T
η2

)2
+ γ

∫

T
η4

]
,

R2(η) := −a22
2

[∫

Ω
v2!−1v2 − π2

6

(∫

T
η2

)2]
,

R3(η) := 1
4

∫

Ω
(a3(x) − 〈a3〉)(Hnv)4,

α := (9〈a3〉 − π2a22)/12, γ := π〈a3〉/2, and

β =
{

(2|α|)−1/2 if α += 0,
(π/γ )1/2 if α = 0.

PROOF. By Lemma 4.8 in [6] withm(s1, s2) = (η(s1)−η(s2))
2, for v(t, x) = η(t + x)−

η(t − x) the operator Φn admits the development

Φn(v) = 2πs∗n2
∫

T
η̇2(t) dt − π2a22

12

(∫

T
η2(t) dt

)2

− a22
2n2

(∫

Ω
v2!−1v2 − π2

6

(∫

T
η2(t) dt

)2)

+ 1
4
〈a3〉

∫

Ω
v4 + 1

4

∫

Ω
(a3(x) − 〈a3〉)(Hnv)4.

Since ∫

Ω
v4 = 2π

∫

T
η4 + 3

(∫

T
η2

)2
,

we write

Φn(v) = 2πs∗n2
∫

T
η̇2 − π2a22

12

(∫

T
η2

)2
+ 1
4
〈a3〉

[
2π

∫

T
η4 + 3

(∫

T
η2

)2]

+ R2(η)

n2
+ R3(η),

where R2, R3 defined above are both homogeneous of degree 4. So

Φn(v) = 2πs∗n2
∫

T
η̇2 + α

(∫

T
η2

)2
+ γ

∫

T
η4 + R2(η)

n2
+ R3(η),

where α, γ are defined above. The rescaling η -→ ηβn concludes the proof. !
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In order to find for n large a nondegenerate critical point of Φn, by the decomposition
of Lemma 7 it is sufficient to find critical points of Ψ on E = {η ∈ H 1(T) | η odd} (as in
Lemma 6.2 of [7], also the term R3(η) tends to 0 with its derivatives).

If 〈a3〉 ∈ (−∞, 0) ∪ (π2a22/9, +∞), then α += 0 and we must choose s∗ = −sign(α),
so that the functional becomes

Ψ (η) = sign(α)

(
−1
2

∫

T
η̇2 + 1

8π

[(∫

T
η2

)2
+ γ

α

∫

T
η4

])
.

Since in this case γ /α > 0, the functional Ψ clearly has a mountain-pass critical point
which solves

(36) η̈ + 〈η2〉η + λη3 = 0, λ = γ

2πα
> 0.

The proof of the nondegeneracy of the solution of (36) is very simple by using the analytic
arguments of the previous section (since λ > 0 a positivity argument is sufficient).

If 〈a3〉 = 0, then the equation becomes η̈ + 〈η2〉η = 0, so we find again what was
proved in [7] for a3(x) ≡ 0.

If 〈a3〉 = π2a22/9, then α = 0. We must choose s∗ = −1, so that we obtain

Ψ (η) = −1
2

∫

T
η̇2 + 1

4

∫

T
η4, η̈ + η3 = 0.

This equation has periodic solutions which are nondegenerate because of non-isochronicity
(see Proposition 2 in [8]).

Finally, if 〈a3〉 ∈ (0, π2a22/9), then α < 0 and there are solutions for both s∗ = ±1.
The functional

Ψ (η) = s∗

2

∫

T
η̇2 + 1

8π

[
−

(∫

T
η2

)2
+ γ

|α|

∫

T
η4

]

= s∗

2

∫

T
η̇2 + 1

4

∫

T
η4[λ − Q(η)],

where

λ := γ

2π |α| > 0, Q(η) := (
∫
T η2)2

2π
∫
T η4

,

has mountain-pass critical points for any λ > 0 because (as in Lemma 3.14 of [6])

inf
η∈E\{0}

Q(η) = 0, sup
η∈E\{0}

Q(η) = 1

(for λ ≥ 1 if s∗ = −1, and for 0 < λ < 1 for both s∗ = ±1).
Such critical points satisfy the Euler–Lagrange equation

(37) −s∗η̈ − 〈η2〉η + λη3 = 0

but their nondegeneracy is not obvious. For this, it is convenient to express these solutions
in terms of the Jacobi elliptic sine.
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PROPOSITION 4. (i) Let s∗ = −1. Then for every λ ∈ (0, +∞) there exists an odd,
analytic, 2π-periodic solution g(t) of (37) which is nondegenerate in E. It is given by
g(t) = V sn(Ωt, m) for suitable constants V, Ω > 0 and m ∈ (−∞, −1).

(ii) Let s∗ = 1. Then for every λ ∈ (0, 1) there exists an odd, analytic, 2π-periodic
solution g(t) of (37) which is nondegenerate in E. It is given by g(t) = V sn(Ωt, m)

for suitable constants V, Ω > 0 and m ∈ (0, 1).

We prove Proposition 4 in several steps. First we construct the solution g as in
Lemma 6.

LEMMA 8. (i) Let s∗ = −1. Then for every λ ∈ (0, +∞) there exist V, Ω > 0 and m ∈
(−∞, −1) such that g(t) = V sn(Ωt, m) is an odd, analytic, 2π -periodic solution of
(37) with a pole at iK(1/(1− m))/(Ω

√
1− m).

(ii) Let s∗ = 1. Then for every λ ∈ (0, 1) there exist V, Ω > 0 and m ∈ (0, 1) such that
g(t) = V sn(Ωt, m) is an odd, analytic, 2π -periodic solution of (37) with a pole at
iK(1− m)/Ω .

PROOF. We know that g(V,Ω,m)(t) := V sn(Ωt, m) is an odd, (4K(m)/Ω)-periodic solu-
tion of (31) (see Lemma 6). So it is a solution of (37) if (V , Ω,m) satisfy






Ω2(1+ m) = s∗V 2〈sn2(·, m)〉,
2mΩ2 = s∗V 2λ,

2K(m) = Ωπ.

(38)

Conditions (38) give the connection between λ and m:

(39) λ = 2m
1+ m

〈sn2(·, m)〉.

Moreover system (38) imposes
{

m ∈ (−∞, −1) if s∗ = −1,
m ∈ (0, 1) if s∗ = 1.

We know that m -→ 〈sn2(·, m)〉 is continuous, strictly increasing on (−∞, 1), and tends
to 0 asm → −∞ and to 1 asm → 1 (see Lemma 12 below). So the right hand side of (39)
covers (0, +∞) for m ∈ (−∞, 0), and it covers (0, 1) for m ∈ (0, 1). For this reason for
every λ > 0 there exists a unique m̄ < −1 satisfying (39), and for every λ ∈ (0, 1) there
exists a unique m̄ ∈ (0, 1) satisfying (39).

The value m̄ and system (38) uniquely determine the values V̄ , Ω̄ .
Analyticity and poles follow from [1, 16.2, 16.10.2, pp. 570, 573]. !

Now we have to prove the nondegeneracy of g. The linearized equation of (37) at g is

ḧ + s∗(〈g2〉 − 3λg2)h = −2s∗〈gh〉g.

Let L be the Green operator, i.e. for f ∈ E, let H := L(f ) be the unique solution
belonging to E of the nonhomogeneous linear system

Ḧ + s∗(〈g2〉 − 3λg2)H = f.
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We can write the linearized equation as h = −2s∗〈gh〉L(g). Multiplying by g and inte-
grating we get

〈gh〉[1+ 2s∗〈gL(g)〉] = 0.

If A0 := 1+ 2s∗〈gL(g)〉 += 0, then 〈gh〉 = 0, so h = 0 and the nondegeneracy is proved.
It remains to show that A0 += 0. As before, the key is to express L(g) in a suitable way.

We first look for a fundamental set of solutions of the homogeneous equation

ḧ + s∗(〈g2〉 − 3λg2)h = 0.(40)

LEMMA 9. There exist two linearly independent solutions of (40), ū even, 2π -periodic
and v̄ odd, not periodic, such that ū(0) = 1, ˙̄u(0) = 0, v̄(0) = 0, ˙̄v(0) = 1, and

(41) v̄(t + 2π) − v̄(t) = ρū(t) ∀t

for some ρ += 0. Moreover

ū(t) = ġ(t)/ġ(0) = ṡn(Ω̄t, m̄),

v̄(t) = 1
Ω̄(1− m̄)

sn(Ω̄t) + m̄

m̄ − 1
ṡn(Ω̄t)

[
t + 1+ m̄

Ω̄

∫ Ω̄t

0

sn2(ξ, m̄)

dn2(ξ, m̄)
dξ

]
.

PROOF. g solves (37) so ġ solves (40); normalizing we find ū.
By (31), the function y(t) = V sn(Ωt, m) solves

(42) ÿ + s∗〈g2〉y − s∗λy3 = 0

if (V , Ω,m) satisfy
{

Ω2(1+ m) = s∗〈g2〉,
2mΩ2 = s∗V 2λ.

We solve this system with respect to m. We obtain a one-parameter family (ym) of
odd periodic solutions of (42), ym(t) = V (m) sn(Ω(m)t, m). So l(t) := (∂mym)|m=m̄

solves (40). We normalize v̄(t) := l(t)/l̇(0) and we compute the coefficients by
differentiating the system with respect to m. From the definitions of the Jacobi elliptic
functions we find that

∂m sn(x, m) = −ṡn(x, m)
1
2

∫ x

0

sn2(ξ, m)

dn2(ξ, m)
dξ ;

thanks to this formula we obtain the expression of v̄.
Since 2πΩ̄ = 4K(m̄) is the period of the Jacobi functions sn and dn, from the formulae

for ū, v̄ we obtain (41) with

ρ = m̄

m̄ − 1
2π

(
1+ (1+ m̄)

〈
sn2

dn2

〉)
.

If s∗ = 1, then m̄ ∈ (0, 1) and we can see directly that ρ < 0. If s∗ = −1, then m̄ < −1.
From the equality 〈sn2 / dn2〉 = (1−m)−1(1−〈sn2〉) (see [3, Lemma 3, (L.2)]), it follows
that ρ > 0. !
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Note that the integral representation of the Green operator L holds again in the present
case. The formula and the proof are just as for Lemma 4.

LEMMA 10. We can write A0 := 1+ 2s∗〈gL(g)〉 as a function of λ, m̄,

A0 = λ(1− m̄)2q − (1− λ)2(1+ m̄)2 + m̄q2

λ(1− m̄)2q

where q = q(λ, m̄) := 2− λ(1+ m̄)2(2m̄)−1. Moreover, q > 0.

PROOF. First, we calculate 〈gL(g)〉 by means of the integral formula of Lemma 4. The
first two equalities in the proof of Lemma 5 still hold, while similar calculations give∫ 2π
0 g3v̄ = −s∗ġ(0)ρ/2λ instead of (29). So

〈gL(g)〉 = −s∗ ρ

4πλ
+ 1
2πρ

( ∫ 2π

0
gv̄

)2
(43)

and the sign of A0 is not obvious. We calculate
∫ 2π
0 gv̄ recalling that g(t) = V̄ sn(Ω̄t, m̄),

using the formula for v̄ of Lemma 9 and integrating by parts:
∫ 2π

0
sn(Ω̄t)ṡn(Ω̄t)µ(t) dt = − 1

2Ω̄

∫ 2π

0
sn2(Ω̄t)µ̇(t) dt,

where µ(t) := t + (1+ m̄)Ω̄−1 ∫ Ω̄t
0 sn2(ξ)/ dn2(ξ) dξ . From [3, (L.2), (L.3) in Lemma 3],

we obtain the formula
〈
sn4

dn2

〉
= 1+ (m − 2)〈sn2〉

m(1− m)

and consequently
∫ 2π

0
gv̄ = πV̄

Ω̄(1− m̄)2
(1+ m̄ − 2m̄〈sn2〉).

By the second equality of (38) and (43),

A0 = 1+ 2
λ

[
− ρ

4π
+ πm̄

ρ(1− m̄)4
(1+ m̄ − 2m̄〈sn2〉)2

]

for both s∗ = ±1. From the proof of Lemma 9 we have ρ = −2πm̄q/(1 − m̄)2, where q

is defined above; inserting this expression of ρ in the last equality we obtain the formula
for A0.

Finally, for m̄ < −1 we have immediately q > 0, while for m̄ ∈ (0, 1) we get q =
2− (1+ m̄)〈sn2〉 by (39). Since 〈sn2〉 < 1, it follows that q > 0. !

LEMMA 11. A0 += 0. More precisely, sign(A0) = −s∗.



PERIODIC SOLUTIONS OF WAVE EQUATIONS 275

PROOF. From Lemma 10, A0 > 0 iff λ(1− m̄)2q − (1− λ)2(1+ m̄)2 + m̄q2 > 0. This
expression is equal to −(1− m̄)2p, where

p = p(λ, m̄) = (1+ m̄)2

4m̄
λ2 − 2λ + 1,

so A0 > 0 iff p < 0. The polynomial p(λ) has degree 2 and its determinant is ∆ =
−(1− m̄)2/m̄. So, if s∗ = 1, then m̄ ∈ (0, 1), ∆ < 0 and p > 0, so that A0 < 0.

It remains to consider the case s∗ = −1. For λ > 0, we have p(λ) < 0 iff λ > x∗,
where x∗ is the positive root of p, x∗ := 2R(1+ R)−2, R := |m̄|1/2. By (39), λ > x∗ iff

〈sn2(·, m̄)〉 >
R − 1

(R + 1)R
.

By formula (34) and by definition of complete elliptic integrals K and E we can write this
inequality as

∫ π/2

0

(
R − 1

(R + 1)R
− sin2 ϑ

)
dϑ

√
1+ R2 sin2 ϑ

< 0.(44)

We put σ := (R − 1)/((R + 1)R) and note that σ < 1/2 for every R > 0.
We have σ − sin2 ϑ > 0 iff ϑ ∈ (0, ϑ∗), where ϑ∗ := arcsin(

√
σ), i.e. sin2 ϑ∗ = σ .

Moreover 1 < 1+ R2 sin2 ϑ < 1+ R2 for every ϑ ∈ (0, π/2). So
∫ π/2

0

σ − sin2 ϑ
√
1+ R2 sin2 ϑ

dϑ <

∫ ϑ∗

0
(σ − sin2 ϑ) dϑ +

∫ π/2

ϑ∗

σ − sin2 ϑ√
1+ R2

dϑ.(45)

Thanks to the formula
∫ b

a
sin2 ϑ dϑ = b − a

2
− sin(2b) − sin(2a)

4

the right hand side of (45) is equal to

sin(2ϑ∗)
4

[
(2σ − 1)

(
2ϑ∗

sin(2ϑ∗)
+ 1√

1+ R2

π − 2ϑ∗

sin(2ϑ∗)

)
+

(
1− 1√

1+ R2

)]
.

Since 2σ − 1 < 0 and α > sinα for every α > 0, this quantity is less than

sin(2ϑ∗)
4

[
(2σ − 1)

(
1+ 1√

1+ R2

)
+

(
1− 1√

1+ R2

)]
.

By definition of σ , the last quantity is negative for every R > 0, so (44) is true.
Consequently, λ > x∗, p < 0 and A0 > 0. !

APPENDIX

We show the properties of the function m -→ 〈sn2(·, m)〉 used in the proof of Lemma 8.
LEMMA 12. The function ϕ : (−∞, 1) → R, m -→ 〈sn2(·, m)〉, is continuous, diff-
erentiable, and strictly increasing. It tends to zero as m → −∞ and to 1 as m → 1.
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PROOF. By (34) and by definition of complete elliptic integrals K and E,

ϕ(m) = K(m) − E(m)

mK(m)
=

∫ π/2

0

sin2 ϑ dϑ
√
1− m sin2 ϑ

(∫ π/2

0

dϑ
√
1− m sin2 ϑ

)−1
,

so the continuity of ϕ is evident.
Using the equality sin2+ cos2 = 1 and the change of variable ϑ -→ π/2 − ϑ in the

integrals which define K and E, we obtain, for every m < 1,

K(m) = 1√
1− m

K

(
m

m − 1

)
, E(m) =

√
1− mE

(
m

m − 1

)
.

We put µ := m/(m − 1), so

ϕ(m) = 1− 1
µ

+ E(µ)

µK(µ)
.

Since µ tends to 1 as m → −∞ and E(1) = 1 and limµ→1K(µ) = +∞, the last formula
gives limm→−∞ ϕ(m) = 0. Since E(m)/K(m) tends to 0 as m → 1, (34) implies that
limm→1 ϕ(m) = 1.

Differentiating the integrals which define K and E with respect to m we obtain

E′(m) = E(m) − K(m)

2m
, K ′(m) = 1

2m

(∫ π/2

0

dϑ

(1− m sin2 ϑ)3/2
− K(m)

)

so

ϕ′(m) = 1
2m2K2(m)

[
E(m)

∫ π/2

0

dϑ

(1− m sin2 ϑ)3/2
− K2(m)

]
.

The term in square brackets is positive by the strict Hölder inequality for (1−m sin2 ϑ)−3/4

and (1− m sin2 ϑ)1/4. !
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