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ABSTRACT. — We prove existence and multiplicity of small amplitude periodic solutions of completely resonant
nonlinear wave equations with Dirichlet boundary conditions for asymptotically full measure sets of frequencies,
extending the results of [7] to new types of nonlinearities.
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1. INTRODUCTION

The aim of this note is to prove existence and multiplicity of small amplitude periodic
solutions of the completely resonant wave equation

) Ou+ f(x,u) =0,
u(t,0) =u(t,7) =0,

where [] := 9;; — 0y, is the d’ Alembertian operator and
2) fx,u) = apu® + a3()u + 0™ or  f(x,u) = agu* + 0W’),

for a Cantor-like set of frequencies w of asymptotically full measure at w = 1.
Equation (1) is said to be completely resonant because any solution v =
ijl aj cos(jt + ;) sin(jx) of the linearized equation at u = 0,

Uy —uyx =0,

3) u(t,0) =u(t,7) =0,

is 2w -periodic in time.

Existence and multiplicity of periodic solutions of (1) were proved for a zero measure,
uncountable Cantor set of frequencies in [4] for f(u) = u3 + O(u’) and in [5]-[6] for any
nonlinearity f(u) = apu? + O, p > 2.

Existence of periodic solutions for a Cantor-like set of frequencies of asymptotically
full measure has recently been proved in [7] where, due to the well known “small divisor
difficulty”, the “Oth order bifurcation equation” is required to have nondegenerate periodic
solutions. This property was verified in [7] for nonlinearities like f = au® + O u*),
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f =a3(x)u’ + Ow®). See also [11] for f = u> + O(w>) (and [9] in the case of periodic
boundary conditions).

In this note we shall prove that, for quadratic, cubic and quartic nonlinearities f (x, u)
as in (2), the corresponding Oth order bifurcation equation has nondegenerate periodic
solutions (Propositions 1 and 2), implying, by the results of [7], Theorem 1 and Corollary 1
below.

We remark that our proof is purely analytic (it does not use numerical calculations)
being based on the analysis of the variational equation and exploiting properties of the
Jacobi elliptic functions.

1.1. Main results
Normalizing the period to 2, we look for solutions of

wzutt —uyx + fx,u) =0,
u(,0)=u(t,7)=0,

in the Hilbert algebra (for s > 1/2,0 > 0)

Xo5 1= [u(t,x) = Zcos(lt)ul(x) ‘ u; € H(;((O,n),R) V] € N and
>0

lull} ==Y expQoD(> + Dlull},; < +oo}.
>0

It is natural to look for solutions which are even in time because equation (1) is
reversible.
We look as well for solutions of (1) in the subalgebras

Xosn:=1{u € Xo5 | uis2mw/n-periodic} C X5 5, neN

(they are particular 2 -periodic solutions).
The space of solutions of the linear equation (3) that belong to H(} (T x (0, 7), R) and
are even in time is

Vo= {U([,x) =" cosnuy sin(x) [w e R, Y Pl < +oo}

I>1 1=1

- {v(t,x) — (4 x) — n(t —x) ‘ n e H'(T,R) odd}.

THEOREM 1. Let either

“) fouw) = a® + a3’ + ) ap(xut
k>4

where (az, (a3)) # (0,0), (a3) :=m7"! fon az(x)dx, or

®) fOru) = agut + ) a (ou

k>5
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where ag # 0, as(m — x) = —as(x), ag(w — x) = ag(x), a7(m — x) = —a7(x). Assume
moreover ai(x) € H'((0, ), R) with >k ||ak||H1,0k < 400 for some p > 0. Then there
exists ng € N such that for every n > ng there are 59,6 > 0 and a C*°-curve [0, &y) >
8 — us € X5 2,50 With the following properties:

1) |lus — vy, ||&/2,s,n = O(Sz)for some U, € VN X5 s, \ {0} with minimal period 2m /n;
(ii) there exists a Cantor set C, C [0, 8o) of asymptotically full measure at § = 0, i.e.
satisfying
C, N (0,
6) im PG N0.8)

e—071 &

such that, for each § € Cy, us(w(8)t, x) is a 2w /(w(8)n)-periodic, classical solution

of (1) with
®) V1 =25*%82  if fis as in (4),
w =
V1 =285 if fisasin(5),
and
—1 if (a3) = 7%a3/12,
s*=1£1 if0< (a3) < w2a3/12,
I if{a3) <0.
By (6) also each Cantor-like set of frequencies W, := {w(§) | § € C,} has

asymptotically full measure at w = 1.

Note how the interaction between the second and third order terms azu?, az(x)u’
changes the bifurcation diagram, i.e. existence of periodic solutions for frequencies w less
than or/and greater than w = 1.

COROLLARY 1 (Multiplicity). There exists a Cantor-like set VW of asymptotically full
measure at o = 1 such that for each o € C, equation (1) has geometrically distinct
periodic solutions

Upgs s Un, - UN,, Ny €N,

with the same period 2w /w. Their number increases indefinitely as w tends to 1:

lim N, = +o0.
w—1

PROOF. The proof is as in [7] and we repeat it for completeness. If § belongs to the
asymptotically full measure set (by (6))

D, :=C,yN...NCy, n=>no,

then there exist n — ng + 1 geometrically distinct periodic solutions of (1) with the same
period 27 /w(8) (each u, has minimal period 277/ (nw(§))).
There exists a decreasing sequence of positive &, — 0 such that

meas(D;, N (0, g,)) < £,27".
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Define the set C = D,, on each [g,11, &,). Then C has asymptotically full measure at
8 = 0 and for each § € C there exist N(§) := max{n € N : § < g,} geometrically
distinct periodic solutions of (1) with the same period 27 /w(8), and N(§) — 400 as
§ — 0. |

REMARK 1. Corollary 1 is an analogue for equation (1) of the well known multiplicity
results of Weinstein—Moser [13]-[12] and Fadell-Rabinowitz [10] which hold in finite
dimensions. The solutions form a sequence of functions with increasing norms and
decreasing minimal periods. Multiplicity of solutions was also obtained in [6] (with the
“optimal” number N, ~ C/+/lw — 1]) but only for a zero measure set of frequencies.

The main point in proving Theorem 1 is to show the existence of nondegenerate
solutions of the Oth order bifurcation equation for f as in (2). In these cases the Oth order
bifurcation equation involves higher order terms of the nonlinearity, and, for n large, can be
reduced to an integro-differential equation (which physically describes an averaged effect
of the nonlinearity with Dirichlet boundary conditions).

CASE f(x,u) = asu* + OW?). Performing the rescaling u — du, § > 0, we look for
27 /n-periodic solutions in X4 s, of

Uy — Uy +8%8(8, x,u) =0,

)
u(t,0) =u(,m) =0,
where
,0
g, x,u) = % = a4u4 + 8a5(x)u5 + 82a6(x)u6 +....

To find solutions of (7) we implement the Lyapunov—Schmidt reduction according to the
orthogonal decomposition X5 5, = (V, N Xo.5.0) & (W N X4 5.n) Where

Vo i={v(t,x) = nnt +nx) —nnt —nx) | n € Hl(']l‘, R) odd},

T
W= {w = Zcos(lt)wl(x) € Xo.s / wy(x)sin(lx)dx =0, VI >0 }
1>0 0

Looking for solutions # = v+ w withv € V,, N X4 5 ,, w € WN X4 5.0, and imposing the
frequency-amplitude relation

we are led to solve the bifurcation equation and the range equation

Av =831y, (8, x, v+ w),
L,w = 8317an(8, X, v+ w),

where Av = vy, + vy, Ly = —@?; + 0y and Iy, © Xosn = Vu N Xosn,
Iy, : Xo5n — W N X, s, denote the projectors.
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With the further rescaling w +— 83w and since v* € W, (Lemma 3.4 of [5]), as(x)v>,
a6(x)v6, a7(x)v’ € W, because as(r — x) = —as(x), asg(m — x) = ag(x), a7(mr — x) =
—ay(x) (Lemma 7.1 of [7]), the system is equivalent to
Av = My, (4agv3w + 8r (8, x, v, w)),

Low = agv* + 8y, 7 (8, x, v, w),

®)

where (8, x, v, w) = ag(x)v® + 5a5(x)v*w 4+ O(8) and 7 (8, x, v, w) = as(x)v> + O(S).
For 8§ = 0 system (8) reduces to w = —ay0~'v* and to the Oth order bifurcation
equation

9) Av 4 4a2 Ty, (WO ) =0,

which is the Euler-Lagrange equation of the functional @ : V,, — R,

lvl? 2
(10) Bo(v) = —1 _ a—“f vio 1y
2 2 /o

where 2 :=T x (0, 7).

PROPOSITION 1. Let as # 0. There exists ng € N such that for all n > nqg the Oth
order bifurcation equation (9) has a solution v, € V, which is nondegenerate in V, (i.e.
Ker D2® = {0}), with minimal period 27 /n.

CASE f(x,u) = aru® + az(x)u® + O ™). Performing the rescaling # — Su we look
for 27 /n-periodic solutions of

@iy — x4 8¢(8, x,u) =0,
u(t,0)=u(,m) =0,
where
S (x, 8u)
52
With the frequency-amplitude relation

g6, x,u) = = a2u2 + <3a3()c)u3 + 82a4(x)u4 +....

where s* = %1, we have to solve

—Av = —s*8" Ty, g(8, x, v+ w),
Low = 6ITw,g(8, x, v+ w).

With the further rescaling w — dw and since v> € W,,, the system is equivalent to

—Av = s* [Ty, (—2avw — ardw? — a3 (x) (v + sw)> — 8r (8, x, v + Sw)),
Low = av? + 8w, Qazvw + Sapw? + az (x) (v + Sw)? + 8r (8, x, v + dw)),

where r (8, x, u) := 8_4[f(x, Su) — axdu? — Baz(Ou’]l = aa(ut + . ...
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For § = 0 the system reduces to w = —ap[1~'v? and the Oth order bifurcation equation
(1) —s*Av = 2a5 Ty, WO~ %) — My, (a3(x)v?),

which is the Euler-Lagrange equation of @¢ : V,, — R,

vlg al 20-1.2 , | 4
(12) Do(v) = - = v:O v+ - | az(x)v”.
2 2 Jo 4 Jo

PROPOSITION 2. Let (az, (a3)) # (0,0). There exists no € N such that for all n > ny
the Oth order bifurcation equation (11) has a solution v,, € V,, which is nondegenerate in
Vi, with minimal period 2 /n.
2. CASE f(x,u) = asu®* + 0W’)
We have to prove the existence of nondegenerate critical points of the functional
D,: V>R, @,):=Dy(H,v),

where @ is defined in (10). Let H,, : V — V be the linear isomorphism defined, for
v(t,x) =nt+x)—n(t—x)eV,by

(Hav)(t, x) :=nn(t +x)) — nn( — x))
sothat V,, = H, V.

LEMMA 1 (see [6]). @, has the following development: for v(t,x) = n(t +x) — n(t — x)
ev,

(13) @, (Bn'Pv) = 4nﬁ2n8/3[W(n) + aR(Z”)],
n
where B := (3/(m?a?)V/%, o :=3/(873),
1
(14) ) = f () dt — %((n“) +3(n*)%)2,
T
() denotes the average on T, and
274
(15) R(p) = —f viO Yt drdx + T4(<n4> +3(n%)%)2.
2

PROOF. First, the quadratic term is

1 n?
Sy = iy, = n2 /;T W20) dr.
By Lemma 4.8 in [6] the nonquadratic term can be developed as

_ R
2

7.[4
/ (M) 'O~ (Hav)* = — (m)?
o 6

n



PERIODIC SOLUTIONS OF WAVE EQUATIONS 263
where m : T2 — R is defined by m(s1, 52) := (n(s1) — n(s2))?, its average is (m) :=
(27)72 [ m(s1, 52) ds1 dsy and

-
—

R(n) := —/ VO vt + 2
o 6

m)
is homogeneous of degree 8. Since 7 is odd we find (m) = 2({(n*) + 3(n*)?), where ()
denotes the average on T. Collecting these equalities we find that

4

2
®,,(n) = 20 / (1) di — %aﬁ«n“) +3()) + %R(m.
T n

1/3

Via the rescaling n — Bn'/°n we get expressions (14) and (15). O

By (13), in order to find for n large enough a nondegenerate critical point of @,, it is
sufficient to find nondegenerate critical points of ¥ (1) defined on

E:={ne H'(T) | nodd),
namely nondegenerate solutions in E of

(16) i+ AMGHIN+nY) =0,  A®m) = n*) +3mH2

PROPOSITION 3. There exists an odd, analytic, 2w -periodic solution g(t) of (16) which
is nondegenerate in E. It is given by g(t) = V sn(§2t, m) where sn is the Jacobi elliptic
sine and V, 2 > 0 and m € (—1,0) are suitable constants (therefore g(t) has minimal
period 27 ).

We will construct the solution g of (16) by means of the Jacobi elliptic sine in Lemma 6.
The existence of a solution g also follows directly by applying to ¥ : E — R the
Mountain-Pass Theorem [2]. Furthermore this solution is an analytic function by arguing
as in Lemma 2.1 of [7].

2.1. Nondegeneracy of g

We now want to prove that g is nondegenerate. The linearized equation of (16) at g is
h+3A@)(1)h + ¢7h) + 6A(9)g(gh) + A'(9)h](3(8%)g +8°) =0,

which we write as

an h+3A@)(8%) + gh = —(gh I — (g°h) 1o

where

I == 6(9(g%)% + (g*)g + 12(g?) g%,

(18) ) 3
I = 12g(g") +4g°.
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For f € E,let H := L(f) be the unique solution belonging to E of the nonhomogeneous
linear system

(19) H+3A()((g5) +8¢HH = f;

an integral representation of the Green operator L is given in Lemma 4 below. Thus (17)
becomes

(20) h = —(gh)L(I) = (¢’ h)L(L).
Multiplying (20) by g and taking averages we get

(21 (gh)[1 + (gL(IN)] = —(g°h) (gL (1)),
while multiplying (20) by g3 and taking averages yields

(22) (&ML + (g L)) = —(gh){(g*LUD).
Since g solves (16) we can deduce the following identities.

LEMMA 2. We have

24(8)(g°L(9)) = (g5,  24(g)(g L(g”) = (g*).
PROOF. The first equality is obtained from the identity for L(g),

d2
L@+ 3A(2)((gH) + gHL(g) = g,

by multiplying by g, taking averages, integrating by parts,

(EL(2)) +3A([(gH(L(9)g) + (g°L(g)] = (g?),

and using the fact that g solves (16).
Analogously, the second equality is obtained from the identity for L(g>),

d2
ﬁ(ug%) +3A(9)(g*) + gHL(g®) = g&°,

by multiplying by g, taking averages, integrating by parts, and using the fact that g
solves (16). O

Since L is a symmetric operator we can compute the following averages using (18) and
Lemma 2:

(gL(I) = 6({g*) +9(g*)P)(gL(g)) + 6A(g) 1 (g?)?,
(gL(D)) = 12(g*)(gL(g)) + 2A(g) "' (g%,
(23) 3 2

(g°L(11)) = 9(g%),
(

8
L)) =2.



PERIODIC SOLUTIONS OF WAVE EQUATIONS 265
Thanks to the identities (23), equations (21), (22) simplify to

(gh)[A(g) +6(g*)%1B(g) = —2(g*)B(g)(g>h),

24

@Y (g7h) = —3(g%)(gh).

where

(25) B(g) :=1+6A(g){gL(g)).

Solving (24) we get B(g)(gh) = 0. We will prove in Lemma 5 that B(g) # 0,so (gh) = 0.
Hence by (24) also (g>h) = 0 and therefore, by (20), & = 0. This concludes the proof of
the nondegeneracy of the solution g of (16).

It remains to prove that B(g) # 0. The key is to express the function L(g) by means
of the variation of constants formula.

We first look for a fundamental set of solutions of the homogeneous equation

(HOM) h+3A)((g%) + gHh =0.

LEMMA 3. There exist two linearly independent solutions of (HOM), u := ¢(t)/£(0)
and v, such that

u is even, 2m-periodic, v is odd, not periodic,
40)=1, u(0) =0, 5(0)=0, v0)=1,
and
(26) v(t+2m) —v(t) = pu(t) for some p > 0.

PROOF. Since (16) is autonomous, g(¢) is a solution of the linearized equation (HOM); it
is even and 2 -periodic.

We can construct another solution of (HOM) in the following way. The superquadratic
Hamiltonian system (with constant coefficients)

27 §+3A(9) g2y + Ay =0

has a one-parameter family of odd, T (E)-periodic solutions y(E, t), close to g, para-
metrized by the energy E. Let E denote the energy level of g, ie. ¢ = y(E,t) and
T(E) = 2. Then I(r) := (3gy(E, t))lE:E is an odd solution of (HOM). Differentiating
the identity y(E,t + T(E)) = y(E,t) with respect to E we obtain, at £ = E,
I(t +27) —I(t) = —(BET(E))lEzég(t) and, normalizing v(t) := l(t)/i(O), we get (26)
with p := —(£ T (E)) g_£(0)/i(0).

Since y(E, 0) = O for all E, the energy identity gives E = %(j}(E ,0))%. Differentiating
with respect to E at E = E yields 1 = g(O)[ (0), so

(28) p=—@ET(E))p_;(@0)".

We have p > 0 because (BET(E))| g—; < 0 by the superquadraticity of the potential
of (27). This can also be checked by a computation (see Remark after Lemma 6). O
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Now we write an integral formula for the Green operator L.

LEMMA 4. For every f € E there exists a unique solution H = L(f) of (19) which can
be written as

t 21 t
L(f)= </ f(s)ﬁ(s)ds—i—l/ fﬁ)ﬁ(r)— (/ f(s)ﬁ(s)ds)ﬁ(t) eE.
0 P Jo 0

PROOF. The nonhomogeneous equation (19) has the particular solution

H(t) = </t F(9)i(s) ds)ﬁ(t) - (/l f(s)f)(s)ds)ﬁ(t)
0 0

as can be verified by observing that the Wronskian a(t)v(r) —i(r)v(t) = 1 for all 7. Notice
that H is odd.

Any solution H (¢) of (19) can be written as H (1) = H(t) + aii + bv, a, b € R. Since
H is odd, i is even and ¥ is odd, requiring H to be odd implies a = 0. Imposing now the
2m-periodicity yields

t+2m t+2m t
0= (f fﬁ)ﬁ(r +27) — (f fﬁ)ﬁ(r +27) — </ fﬁ)z‘)(t)
0 0 0

t
+ (/ fﬁ)ﬁ(r) + b((t + 27) — B(1))
0

t t+2m
= (b+/ fﬁ)(ﬁ(l—i—Zn)—ﬁ(t))—ﬁ(t)(/ fﬁ),
0 t

because u and fu are 2mw-periodic and (fu) = 0. By (26) we have

p<b+/0tfzz)—/tt+2nfﬁ=o.

This expression is constant in time, because, by differentiating in 7,

pf@®u) — fO) @ +27) —v(t)) =0

again by (26). Hence evaluating at t = 0 yields b = p~! 02” fv. So there exists a
unique solution H = L(f) of (19) belonging to E, and the integral representation of

L follows. O

LEMMA 5. We have

P 1 2 ~ 2
(gL(g”:zmA(g)*E(/o gv) -0

because A(g) > 0 and p > 0.
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PROOF. Using the formula of Lemma 4 and integrating by parts we can compute

1 2 t 1 2 2
(gL(g)) = E/o </0 gﬁ)l’)(t)g(t)dt + E(/o gﬁ)
1 2 t
~om A (/0 g{;)ﬁ(t)g(t) dt
1 2 t 1 2 2
= 25 A </0 gﬁ)ﬁ(t)g(t) dr + %</0 gt'))

because /0271 gu = 0. Since u(t) = g(t)/£(0) and g(0) = 0, we have

t _ 1 27 t AW 1 2 5
/og“ 250 /0 (/0 gu)v(t)g(t)dt:—zg(o)/o o9,

so it remains to show that

2 .
29 3= _ ,08(0).
@9 /0 VP

Since g solves (16), multiplying by v and integrating yields

2
/O [5()3(1) + 3A(2) (28 (N(1) + Alg)g> (D) di =

Since v solves (HOM), multiplying by g and integrating gives

2
/0 [(O3() + 3A4(2) (2 5(Ng (1) + 3A()g> (VYo(1)]di = 0.

Subtracting the last two equalities we get

2 2
/0 [0()E@) — g)v(1)]dt =2A(g)/0 g’0.

Integrating by parts the left hand side, since g(0) = g(27) = 0, 2(0) = 1 and (26), we
obtain

2
/0 [D(NE(1) — g()v(D)]dt = ZO)[v(271) — v(0)] = pg(0).

S024(g) fy" &% = pg(0). O

2.2. Explicit computations

We now give the explicit construction of g by means of the Jacobi elliptic sine defined as
follows. Let am(-, m) : R — R be the inverse function of the Jacobi elliptic integral of the

first kind
19

¢ > Flp,m) —/
\/l—msm
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The Jacobi elliptic sine is defined by
sn(t, m) := sin(am(z, m)).
It is 4K (m)-periodic, where K (m) is the complete elliptic integral of the first kind
bid /2 do
K (m) :=F<—,m)=/ ="
2 0 V1—msin?>®

and admits an analytic extension with a pole at i K (1 —m) form € (0, 1) and ati K (1/(1 —

m))/+/1 —m for m < 0. Moreover, since d; am(¢, m) = /1 —m sn%(t, m), the elliptic

sine satisfies
(30) (sn)? = (1 — sn?)(1 — m sn?).

LEMMA 6. There exist V, 2 > 0 and m € (—1,0) such that g(t) := V sn(£2t, m) is an
odd, analytic, 21 -periodic solution of (16) with pole at i K (1/(1 — m))/(£2+/1 — m).

PROOF. Differentiating (30) we have sh + (1 4+ m)sn—2msn® = 0. Therefore
gw,2.m(t) :=V sn(£2t, m) is an odd, (4K (mm)/$2)-periodic solution of

92
31 g'+522(1+m)g—2mwg3 =0.

The function g(v, o, m) will be a solution of (16) if (V, £2, m) satisfy

22(1+m) =3A6Qw.2.m) {8 am)
(32) —2m2% = V2AQgwv.2.m),
2K (m) = 2.

Dividing the first equation of (32) by the second yields

14+m
(33) — o = (s’ m)).
m
The right hand side can be expressed as
K(m) — E(m)
34 2., =—=
(34) (sn”(-, m)) K ()

where E (m) is the complete elliptic integral of the second kind,

/2 K (m)
E(m) :=f \/l—msinzﬁdﬁzf (l—msnz(é,m))dé
0 0

(in the last passage we make the change of variable ¢ = am(&, m)).
Now, we show that system (32) has a unique solution. By (33) and (34),

(7+m)K(m) —6E(m) =0.
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By the definitions of E(m) and K (m) we have

/21 + m(1 + 6sin® ¥)
(1 — msin® 9)1/2

W(m) = (7 +m)K (m) — 6E(m) = /
0

We have ¢ (0) = 7/2 > 0 and ¢ (—1) = — 077/26sin2 9 (1+ sin? )~ Y249 < 0. Since

Y is continuous there exists m € (—1, 0) such that ¥ (m) = 0. Next the third equation in
(32) fixes £2 and finally we find V. Hence g = V sn(£2¢, m) solves (16).

Analyticity and poles follow from [1, 16.2, 16.10.2, pp. 570, 573].

Finally, 7 is unique because ¥'(m) > 0 for m € (—1,0) as can be verified by
differentiating the formula for ¥r. One can also compute that m € (—0.30, —0.28). O

REMARK. We can explicitly compute the sign of d7/dE and p of (28) in the following
way. The functions g(v,¢,m) are solutions of the Hamiltonian system (27)

221 =a,
35) ( —i—2 n) 20[
—2m2°=V-g,
where o := 3A(g)(g?), B := A(g) and g is the solution constructed in Lemma 6.
We solve (35) with respect to m to find the one-parameter family (y,,) of odd periodic
solutions y,, (¢) := V (m) sn(§2(m)t, m), close to g, with energy and period

1, ’ 1 4 4K (m)
E(m) = §V (m)$2-(m) = —Bmﬂ (m), T(@m)= am

We have

dT(m)  4K'(m)$2(m) — 4K (m)Q'(m) -

07
dm 22(m)

because K'(m) > 0 and from (35), £2/'(m) = —$2(m)(2(1 + m))~' < 0. Then

dEGm) _ 1 4 o 1 s,
e /3.(2 (m) ﬂm4[2 (m)$2"(m) <O,

SO

dr dT(m)(dE(m)>_1 0
dE ~ dm \ dm ) =

as stated by general arguments in the proof of Lemma 3.
We can also write an explicit formula for p,

2 2
2t,
sn”( m) dfi|-

m
=—271+1+m/ swser, m)
p m—1|: (m) | dn(Q1, m)

From this formula it follows that p > 0 because —1 < m < 0.
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3. CASE f(x,u) = asu® + az(x)u’ + O (u*)

We have to prove the existence of nondegenerate critical points of the functional @, (v) :=
@o(H,v) where @ is defined in (12).

LEMMA 7 (see [6]). @, has the following development: for v(t,x) = n(t +x) — n(t — x)
eV,

2
,(Bnv) = 4nﬂ2n4[11f(n) 4P (RZ(”) + R3(n))],

47\ n?

A T 2\ 4
l1/(77)-—? 77+4—Ol n) +y |0y
T T T T
a2 72 2
= [ [ e ([)]
2(n) > QU v 6 T'?

1
R3() i= 4 /g (a3(x) — (a3)) (Hav)*,

where

o = (Ya3) — nzag)/ll y = m{a3)/2, and

_ | @en™2 ipa o,
@' ife=o.

PROOF. By Lemma 4.8 in [6] with m (s, s2) = (n(s1) — n(s2))2, for v(t, x) = n(t +x) —
n(t — x) the operator @, admits the development

n2a2 2
D, (v) = 2ns*n2/ 02 (1) dt — —2</ rﬂ(r)dt)
T 12 \Jr
2 2 2
a 2-1,2 T~ 2
_2n2</QUD v 6<An(t)dt>>
1 1
+Z<"3>/ v4+1f (a3(x) — (a3)) (Hav)*.
2 2

2
[ o)
2 T T
we write
72a? 2 2
¢n(v)=2ns*n2/ﬁ2——2</ 7]2> +—(a3)|:2n/774+3</ 772> i|
T 12 \Jr 4 T T

R
20D 4 Ry,
n

Since

+

where R;, R3 defined above are both homogeneous of degree 4. So

2
¢n(v)=2ﬂs*”2/ﬁ2+“(/ ’72> +V/n“+R2(")+R3<n),
T T T

n2

where «, y are defined above. The rescaling 1 — nBn concludes the proof. a
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In order to find for n large a nondegenerate critical point of @,,, by the decomposition
of Lemma 7 it is sufficient to find critical points of ¥ on E = { € H'(T) | n odd} (as in
Lemma 6.2 of [7], also the term R3(n) tends to O with its derivatives).

If (a3) € (—o0,0) U (n2a5/9, +00), then @ # 0 and we must choose s* = —sign(«),
so that the functional becomes

1 1 2
'J’(n)=Sign(oc)<—§/Tf72+g[<an2> +§an4D.

Since in this case y/a > 0, the functional ¥ clearly has a mountain-pass critical point
which solves

(36) i+ P+ =0, A= 50
2no
The proof of the nondegeneracy of the solution of (36) is very simple by using the analytic
arguments of the previous section (since A > 0 a positivity argument is sufficient).
If (a3) = 0, then the equation becomes 7 + (n>)n = 0, so we find again what was
proved in [7] for az(x) = 0.

If (a3) = nza%/9, then o« = 0. We must choose s* = —1, so that we obtain
1 o 1 4 .. 3
Ym=—-s |+ | n, fH+n =0
2 Jr 4 Jr

This equation has periodic solutions which are nondegenerate because of non-isochronicity
(see Proposition 2 in [8]).
Finally, if (a3) € (O, nzag /9), then @ < 0 and there are solutions for both s* = +1.

The functional
s* 1 2 y
() 2/11‘” 8w Tn || ’]Tn
—f/'2+1/ - o)
= Tn 2 Tn om],
_ (pnd?

T Jpn*

has mountain-pass critical points for any A > 0 because (as in Lemma 3.14 of [6])

where
__r
T 27|

>0, Q@)

inf Q()=0. sup Q=1
neE\{0} 1 neE\%O} §

(for A > 1if s* = —1, and for 0 < A < 1 for both s* = £1).
Such critical points satisfy the Euler-Lagrange equation

(37) —s*ii — (") +an* =0

but their nondegeneracy is not obvious. For this, it is convenient to express these solutions
in terms of the Jacobi elliptic sine.
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PROPOSITION 4. (i) Let s™ = —1. Then for every ) € (0, +00) there exists an odd,
analytic, 2w -periodic solution g(t) of (37) which is nondegenerate in E. It is given by
g(t) = V sn(82¢t, m) for suitable constants V, 2 > 0 and m € (—oo, —1).

(ii) Let s* = 1. Then for every A € (0, 1) there exists an odd, analytic, 27 -periodic
solution g(t) of (37) which is nondegenerate in E. It is given by g(t) = V sn(§2¢, m)
for suitable constants V, 2 > 0 and m € (0, 1).

We prove Proposition 4 in several steps. First we construct the solution g as in
Lemma 6.

LEMMA 8. (i) Lets* = —1. Then for every ) € (0, +00) there exist V, 2 > 0and m €
(—00, —1) such that g(t) = V sn(§2t, m) is an odd, analytic, 2w -periodic solution of
BTy withapoleatiK(1/(1 —m))/(£2+/1 — m).

(ii) Let s* = 1. Then for every A € (0, 1) there exist V, 2 > 0 and m € (0, 1) such that
g(t) = Vsn(82t, m) is an odd, analytic, 27 -periodic solution of (37) with a pole at
iK(l—m)/$2.

PROOF. We know that g(v, o m)(t) := V sn(£2¢, m) is an odd, (4K (m)/$2)-periodic solu-
tion of (31) (see Lemma 6). So it is a solution of (37) if (V, £2, m) satisfy

Q21+ m) = s*V(sn’(-, m)),
(38) 2mR% = s*V2A,

2K (m) = 2.

Conditions (38) give the connection between A and m:

39 A= (-, m)).
(39 T (sn”(-, m))
Moreover system (38) imposes
m e (—oo, —1) if s* = —1,
m e (0, 1) if s* = 1.

We know that m +— (sn2(-, m)) is continuous, strictly increasing on (—oo, 1), and tends
to0asm — —ooandto 1 asm — 1 (see Lemma 12 below). So the right hand side of (39)
covers (0, +00) for m € (—o0, 0), and it covers (0, 1) for m € (0, 1). For this reason for
every A > 0 there exists a unique m < —1 satisfying (39), and for every A € (0, 1) there
exists a unique m € (0, 1) satisfying (39).

The value 772 and system (38) uniquely determine the values V, 2.

Analyticity and poles follow from [1, 16.2, 16.10.2, pp. 570, 573]. O

Now we have to prove the nondegeneracy of g. The linearized equation of (37) at g is
h+5%((8%) = 348%)h = 25" (gh)g.

Let L be the Green operator, i.e. for f € E, let H := L(f) be the unique solution
belonging to E of the nonhomogeneous linear system

H+5*((g%) —3r¢HH = f.
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We can write the linearized equation as h = —2s*(gh)L(g). Multiplying by g and inte-
grating we get
(g1 +25™(gL(g)]1=0.

If Ag := 1+ 25*(gL(g)) # 0, then (gh) = 0, so h = 0 and the nondegeneracy is proved.
It remains to show that Ay # 0. As before, the key is to express L(g) in a suitable way.
We first look for a fundamental set of solutions of the homogeneous equation

(40) i+ s*((g%) — 3rg)h = 0.

LEMMA 9. There exist two linearly independent solutions of (40), i even, 27 -periodic
and v odd, not periodic, such that u(0) = 1, u(0) =0, v(0) =0, v(0) = 1, and

41 v(t 4+ 2m) —v(t) = pu(t) Vt
for some p # 0. Moreover
(1) = §(1)/£(0) = sn(82¢, m),

_ 1 ; mo - 1+ (2 sn?(E, m)
- (& 2 _ .
V)= Sy S s I)[H 5 /0 dn%&n‘a)dé}

PROOF. g solves (37) so g solves (40); normalizing we find u.
By (31), the function y(¢) = V sn(£2¢, m) solves

(42) §+s*(ghy —s*ay? =0
if (V, §2, m) satisfy

271 +m) = s*(g%),
2mR? = s*V2.

We solve this system with respect to m. We obtain a one-parameter family (y,) of
odd periodic solutions of (42), y,(t) = V(m)sn(£2(m)t,m). So I(t) := (OnYm)m=mn
solves (40). We normalize v(f) := l(t)/i (0) and we compute the coefficients by
differentiating the system with respect to m. From the definitions of the Jacobi elliptic

functions we find that
. 1 [* sn®(&, m)
O sn(x, m) = —sn(x, m)— — ———dé&;
2Jo dn(&,m)

thanks to this formula we obtain the expression of v.
Since 2 §2 = 4K (m) is the period of the Jacobi functions sn and dn, from the formulae
for u, v we obtain (41) with

(14 (12
= T m .
P dn?
If s* = 1, then m € (0, 1) and we can see directly that p < 0. If s* = —1, thenm < —1.

From the equality (sn2 / dnz) =1-m~1a- (snz)) (see [3, Lemma 3, (L.2)]), it follows
that p > 0. O
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Note that the integral representation of the Green operator L holds again in the present
case. The formula and the proof are just as for Lemma 4.

LEMMA 10. We can write Ag := 1 + 2s*(gL(g)) as a function of A, m,

M1 —m)2q — (1= 1)2(1 +m)? + mg?

A
0 (1 —m)2q

where g = q(A,m) =2 — A(l + n'1)2(2n'1)_1. Moreover, g > 0.

PRrROOF. First, we calculate (gL(g)) by means of the integral formula of Lemma 4. The
first two equalities in the proof of Lemma 5 still hold, while similar calculations give

7T ¢35 = —s*§(0)p/22 instead of (29). So

B . D 1 2 ~ 2
43) (8L() = —5" 7= + %( /0 g)

and the sign of Ag is not obvious. We calculate fozn gv recalling that g(¢) = V sn($2t, m),
using the formula for v of Lemma 9 and integrating by parts:

2 2
f sn(20)sn(21)u(t) dt = 1 / sn?(20)(t) dt,
0 282 Jo

where (1) ==t + (1 +m)2~! 0‘_2‘ sn2(£)/ dn* (&) d&. From [3, (L.2), (L.3) in Lemma 3],
we obtain the formula

<sn4> 1+ (m— 2)(sn?)

a2/~ m(—m)

and consequently

2w _ 7.[‘_/ ~ ~ 5

By the second equality of (38) and (43),

0 Tm

Moo= 14+ 2| =L T i — 2(snd))?
0 Ao4r o p(d —m)t

for both s* = 1. From the proof of Lemma 9 we have p = —2mmq/(1 — n)?, where ¢
is defined above; inserting this expression of p in the last equality we obtain the formula
for Ag.

Finally, for m < —1 we have immediately ¢ > 0, while form € (0, 1) we get g =
2 — (1 4 m)(sn?) by (39). Since (sn?) < 1, it follows that ¢ > 0. O

LEMMA 11. Ag # 0. More precisely, sign(Ag) = —s™.
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PROOF. From Lemma 10, Ag > 0 iff A(1 — m)2g — (1 — A)*(1 + m)* + img? > 0. This
expression is equal to —(1 — 712)? p, where
1 =\2
— ﬂ)ﬂ
4

p = p(i,m) — 21+ 1,

so Ap > 0 iff p < 0. The polynomial p(A) has degree 2 and its determinant is A =
—(1 - n'z)z/rh. So,if s* = 1,thenm € (0,1), A < 0Oand p > 0, so that Ay < O.

It remains to consider the case s* = —1. For A > 0, we have p(A) < 0 iff A > x*,
where x* is the positive root of p, x* := 2R(1 + R)™2, R := |m|'/?. By (39), » > x* iff
o R—1
(sn”(-,m)) > ——7—.

(R+ 1R

By formula (34) and by definition of complete elliptic integrals K and E we can write this
inequality as

T2 R—1 dv
(44) / <— — sinzz?)— <0.
0 (R+ DR V1 + R2sin® 9
We puto := (R — 1)/((R 4+ 1)R) and note that ¢ < 1/2 for every R > 0.
We have o — sin? 9 > 0 iff & € (0, 9*%), where 9* := arcsin(y/0), i.e. sin2 9* = 0.
Moreover 1 < 1+ RZsin? 9 < 1 + R? for every v € (0, /2). So

45) /m oS0 s [ sy + /n/z o —SD
_— < o — SIn E—— .
0 1+ R2sin? 0 + N1+ R?

Thanks to the formula

/” il gy - L= @ sin@b) —sinQa)
p 2 4

the right hand side of (45) is equal to

sin(29*) 29* 1 T —20* 1
— | Qo =D = + . + (1 —= |
4 sin(20*) /1 + R2 sin(20*) 1+ R2
Since 20 — 1 < 0 and @ > sin« for every o > 0, this quantity is less than
in(20* 1 1
M[(20 - 1)(1 n —> n (1 . —)]

4 Vv1+R? V14 R?
By definition of o, the last quantity is negative for every R > 0, so (44) is true.
Consequently, A > x*, p < 0 and Ag > 0. O

APPENDIX

We show the properties of the function m +—> (sn?(-, m)) used in the proof of Lemma 8.

LEMMA 12. The function ¢ : (—o0,1) — R, m + (sn(-, m)), is continuous, diff-
erentiable, and strictly increasing. It tends to zero as m — —oo and to 1 as m — 1.
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PROOF. By (34) and by definition of complete elliptic integrals K and E,

o K (m) — E(m) /2 sin? 9 do (f”/z dv )‘1
pom) = ——= — T ’
mK (m) 0 Vi—msinto o V1—msin2o

so the continuity of ¢ is evident.
Using the equality sin? + cos> = 1 and the change of variable ¥ + /2 — ¥ in the
integrals which define K and E, we obtain, for every m < 1,

K(m) =

E(m):«/l—mE(L)
m—1

1 < - )
V1 —m m—1)"
Weput u :=m/(m — 1), so

1 Ew
—1-— .
wlm) PRI

Since p tends to 1 as m — —oo and E(1) = 1 and lim, .1 K () = +o00, the last formula
gives lim,,— oo ¢(m) = 0. Since E(m)/K (m) tends to 0 as m — 1, (34) implies that
limy, 1 ¢(m) = 1.

Differentiating the integrals which define K and E with respect to m we obtain

E'(m) =

E(m) — K (m) 1 /”/2 dv
2m ’ 2m< 0

K/ m) —m— — —_—_—m
() (1 — m sin® 9)3/2

- K(m))

SO

"(m) = ;[Em) / U Kz(m)}
v ~ 2m2K2%(m) 0o (1 —msin®®)3/2 ’

The term in square brackets is positive by the strict Holder inequality for (1—m sin® ©)
and (1 —msin> )4 O

—3/4
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